USN

Seventh Semester B.E. Degree Examination, Dec.2016/Jan.2017 **Embedded System Design** Max. Marks:100

Time: 3 hrs.

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

		at least TWO questions from each part.	
1	a. b. c.	PART – A Explain a microprocessor based embedded system with diagram. With necessary block diagram, explain the embedded system life cycle. Explain the important steps in developing a embedded system.	(08 Marks) (08 Marks) (04 Marks)
2	a.	Analyze how errors propogate under: (i) Addition process (ii) Multiplication	(08 Marks)
	b. с.	With the help of diagram, explain (i) Index mode data transfer operation. (ii) Program counter relative operation. With timing diagram, explain (i) Writing to a register (ii) Reading from a register.	(08 Marks) ster. (04 Marks)
3	a. b.	With diagram, explain direct mapping implementation and associative majimplementation. With diagram, explain the operation of DRAM. With timing diagram, explain the operation of DRAM.	oping cache (08 Marks)
4	c. a. b	Develop hardware and software specification for designing a counter and give flow diagram. With diagram explain (i) Water fall life cycle model (ii) Spiral life cycle model	data control (08 Marks) del. (08 Marks) (04 Marks)
	c	. Compare functional model and architectural model.	
		Explain how memory is managed at, (i) System level (ii) Process level. Explain operating system architecture with diagram. Explain multithreaded OS.	(08 Marks) (08 Marks) (04 Marks)
ing oi ideimmeanois aff	-	 a. Organize general purpose registers as, (i) Four different contexts (ii) Overlapping contexts. b. Explain the structure of TCB with diagram. c. With diagram, explain real time stack and application stack. 	(08 Marks) (08 Marks) (04 Marks)
2. Any reveal	7	 a. Analyze the basic flow of control construct in, (i) Constant time statements of statements (iii) For loops (iv) While loops. b. Explain the 3 methods used to compute time loading. 	(ii) Sequence (08 Marks) (08 Marks) (04 Marks)
	8	 a. Explain a typical memory map with diagram and explain the design of me reference to memory loading. b. Explain caches and their performance. c. Write explanatory note on hardware accelerators. 	mory map with (08 Marks) (08 Marks) (04 Marks)

c. Write explanatory note on hardware accelerators.